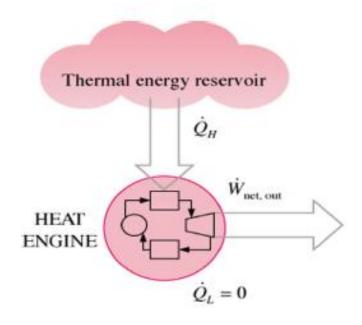
Lecture 5

The Second Law of Thermodynamics

The Second Law of Thermodynamics

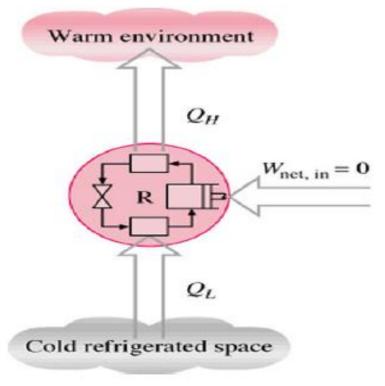
Note:-

The *first law* places *no restriction on the direction of a process and* does not ensure whether the process will actually occur or not.


➤ The second Law of Thermodynamics can answer on:

- ✓ Identifies the direction of processes;
- ✓ Asserts that energy has quality as well as quantity;
- ✓ Optimal performance of the process or cycle;
- ✓ Determines the theoretical limits for the performance of commonly used engineering systems.

The second law of thermodynamic statements:


1- Kelvin-Plank Statement:-

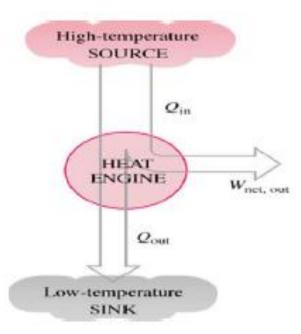
It is *impossible* for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.

2- Classius Statement:-

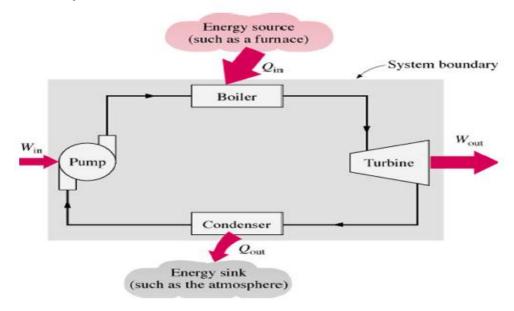
It is *impossible* to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower temperature body to a higher-temperature body.

* Heat Engine:

It is a device that operates in a thermodynamic cycle produces work as a result of heat transfer from high temperature body to low temperature body.


Or a device to convert Heat to Work

☐ The characteristics of heat engines:


- 1. Receive heat from a high-temperature source (solar energy, oil furnace, nuclear reactor, etc.).
- 2. Convert part of this heat to work, e.g. a rotating shaft.
- 3. Reject the remaining waste heat to a low-temperature sink (the atmosphere, rivers, etc.).
- 4. Operate on a thermodynamic cycle.

☐Thermal Efficiency

$$\eta_{th} = \frac{W_{net}}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}} = 1 - \frac{Q_{L}}{Q_{L}} = 1$$

- The work-producing device that best fits into definition of heat engine is *the* steam power plant, which is an external combustion engine. That is, the combustion take place outside the engine.
- ➤ Each unit is a steady-state open system.
- ightharpoonup The combination system is a closed one, i.e. $\Delta E = \Delta U = 0$.

➤ Overall Energy Balance:

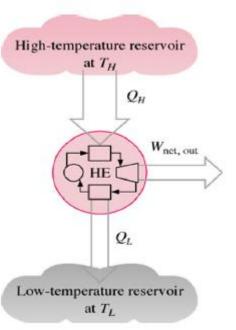
$$Win + Qin = Wout + Qout$$

Thermal Efficiency

Themal efficiency = $\frac{\text{Net work ouput}}{\text{Net work ouput}}$

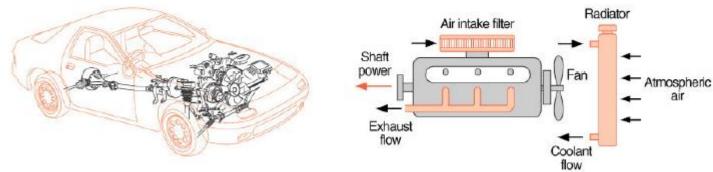
Total heat input

$$\eta_{th} = \frac{W_{net,out}}{Q_{in}}$$
 $\frac{W_{net,out} = W_{out} - W_{in}}{Q_{out}}$
 $\frac{So \ that:}{Q_{in}}$
 $\eta_{th} = 1 - \frac{Q_{out}}{Q_{in}}$


$$\eta_{th} = 1 - \frac{Q_L}{Q_{tt}}$$

where

 Q_H = magnitude of heat transfer between the cyclic device and the high-temperature medium at temperature T_H .


 Q_L = magnitude of heat transfer between the cyclic device and the low-temperature medium at temperature T_L .

- > The thermal efficiency is
- \checkmark only about 25% for automobile engines!
- ✓ 40% for diesel engines and large gas-turbine plants

Example Energy Rejection of an Engine

An automobile engine produces 100 kW on the output shaft with a thermal efficiency of 30 %. The fuel it burns gives 35000 kJ/kg as energy release. Find the total rate of energy rejected to the ambient and the rate of fuel consumption in kg/s.

From the definition of heat engine:

$$\dot{W} = \eta_{eng} \dot{Q}_{H}$$

 $\dot{Q}_{H} = \dot{W} / \eta_{eng} = 100 / 0.30 = 333 \text{ kW}$

The energy equation for overall engine gives:

$$\dot{Q}_L = \dot{Q}_H - \dot{W} = \dot{Q}_H - \eta \dot{Q}_H$$

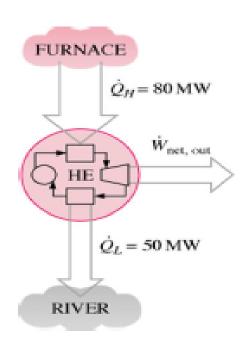
 $\dot{Q}_L = (1 - 0.3)\dot{Q}_H = 233 \text{ kW}$

From the energy release in the burning we have

$$\dot{Q}_H = m\dot{q}_H$$

$$\dot{m} = \frac{Q_H}{q_H} = \frac{333 \text{ kW}}{35,000 \text{ kJ/kg}} = 0.0095 \text{ kg/s}$$

Example Thermal Efficiency of a Heat Engine

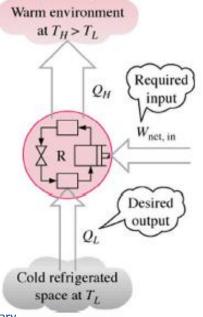

Heat is transferred to a heat engine from a furnace at a rate of 80 MW. If the rate of waste heat rejection is 50 MW, determine the net power and the thermal efficiency for this heat engine.

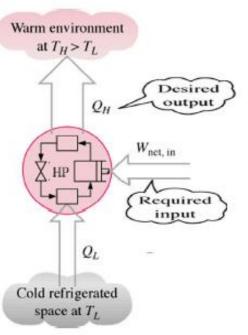
Solution:

$$\dot{Q}_H = 80MW \qquad \dot{Q}_L = 50MW$$

$$\dot{W}_{net,out} = \dot{Q}_H - \dot{Q}_L = 80 - 50 = 30MW$$

$$\eta_{th} = \frac{\dot{W}_{net,out}}{\dot{Q}_{in}} = \frac{30MW}{80MW} = 37.5\%$$


* Refrigerators and Heat Pump:


It is a device that operates in a thermodynamic cycle receives work to transfer heat from low temperature body to high temperature body.

Refrigerator: it is a device that removes heat from a low temperature medium (called Cooling Load).

Heat Pump: it is a device that transfers heat to a high temperature medium (called

Heating Load).

Coefficient of Performance (COP):

☐ For refrigerator:

$$\left. \textit{COP} \right|_{R} = \frac{\textit{Required Input}}{\textit{Desired Output}} = \frac{\textit{Q}_{\textit{L}}}{\textit{W}_{\textit{net}}} = \frac{\textit{Q}_{\textit{L}}}{\textit{Q}_{\textit{H}} - \textit{Q}_{\textit{L}}}$$

 \Box For heat pump:

$$\left. \mathit{COP} \right|_{\mathit{H.P}} = \frac{\mathit{Desired\ Output}}{\mathit{Required\ Input}} = \frac{\mathit{Q_H}}{\mathit{W_{net}}} = \frac{\mathit{Q_H}}{\mathit{Q_H} - \mathit{Q_L}}$$

Note:

The COP of a heat pump is always greater than unity. At a fixed value of Q_L and Q_H :

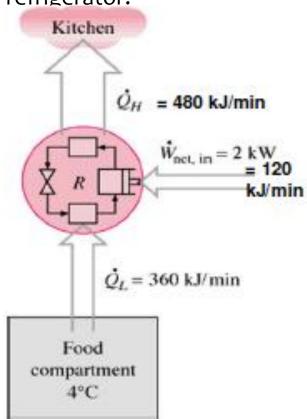
$$COP_{HP} = COP_R + 1$$

$$COP|_{R} + 1 = \frac{Q_{L}}{Q_{H} - Q_{L}} + \frac{Q_{H} - Q_{L}}{Q_{H} - Q_{L}} = \frac{Q_{L} + Q_{H} - Q_{L}}{Q_{H} - Q_{L}} = \frac{Q_{H}}{Q_{H} - Q_{L}} = \frac{Q_{H}}{Q_{H} - Q_{L}} = COP|_{HP}$$

Example Heat Rejection by a Refrigerator

The food compartment of a refrigerator is maintained at 4°C by removing heat from it at a rate of 360 kJ/min. If the required powered input to the refrigerator is 2 kW, determine

- a) The COP of the refrigerator.
- b) The rate of heat rejection to the room that houses the refrigerator.


Solution:

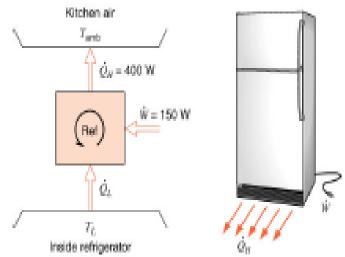
a)
$$COP_R = \frac{\dot{Q}_L}{\dot{W}_{net,in}} = \frac{360 \text{kJ/min}}{2 \text{kW}} \left(\frac{1 \text{kW}}{60 \text{kJ/min}}\right) = 3$$

$$\dot{Q}_{H} = \dot{Q}_{L} + \dot{W}_{net,in}$$

$$\dot{Q}_{H} = 360 \text{ kJ/min} + (2\text{kW}) \left(\frac{60\text{kJ/min}}{1\text{kW}}\right)$$

$$\dot{Q}_{H} = 480 \text{ kJ/min}$$

Example Coefficient of Performance of a Refrigerator


The refrigerator in a kitchen receives an electrical input power of 150 W to derive the system, and it rejects 400 W to the kitchen air. Find a) the rate of energy taken out of the cold space and b) the coefficient of performance of the refrigerator.

Solution

a)
$$\dot{Q}_L = \dot{Q}_H - \dot{W}_{net,in}$$

$$\dot{Q}_L = 400 - 150 = 250W$$

b)
$$COP_R = \frac{\dot{Q}_L}{\dot{W}_{net,in}} = \frac{250}{150} = 1.67$$

That is 1.67 kJ of heat is recovered from the refrigerated space for each kJ of work supplied

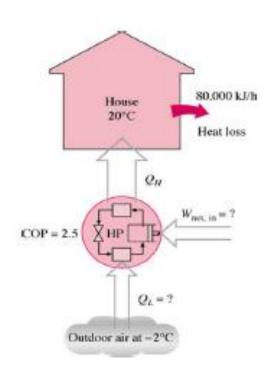
Example Heating a House by a Heat Pump

A heat pump is used to meet the heating requirements of a house and maintain it at 20°C. On a day when the outdoor air temperature drops to -2°C, the house is estimated to loose heat at a rate of 80,000 kJ/h. If the heat pump under these conditions has a *COP of 2.5*, determine

- a) the power consumed by the heat pump and
- b) the rate at which heat is adsorbed from the cold outdoor air.

Solution

a) The power consumed by the heat pump is


$$\dot{W}_{net,in} = \frac{\dot{Q}_H}{COP_{HP}}$$

$$\dot{W}_{net,in} = \frac{80,000 \text{ kJ/h}}{2.5} = 32,000 \text{ kJ/h} \text{ (or 8.9kW)}$$

b) The rate of heat transfer from outdoor is

$$\dot{Q}_L = \dot{Q}_H - \dot{W}_{net,in}$$

$$\dot{Q}_L = (80,000 - 32,000) \text{kJ/h} = 48,000 \text{kJ/h}$$

